
K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 1|P a g e

A Survey on Using Artificial Intelligence Techniques in the

Software Development Process

K. Hema Shankari
1
, Dr. R.Thirumalaiselvi

2

1
 Research Scholoar, Bharath University and Assistant professor, Department of Computer Science, Women‟s

Christian College, Chennai.
2

 Research Supervisor and Assistant professor, Department of Computer Science, Govt. Arts College (Men)

(Autonomous), Nandanam, Chennai.

ABSTRACT
Software engineering and artificial intelligence are the two important fields of the computer science. Artificial

Intelligence is about making machines intelligent, while Software engineering is knowledge –intensive activity,

requiring extensive knowledge of the application domain and of the target software itself. This study intends to

review the techniques developed in artificial intelligence from the standpoint of their application in software

engineering. The goal of this research paper is to give some guidelines to use the artificial intelligence

techniques that can be applied in solving problems associated with software engineering processes.

The aim of this paper is to find out the exact AI technique is likely to be fruitful for particular software

development process

Keywords: Software Engineering, Artificial Intelligence Techniques, Software Development Process

I. INTRODUCTION
Software development process is a very

complex process that, at present, is primarily a

human activity. Programming in software

development, requires the use of different types of

knowledge: about the problem domain and the

programming domain. It also requires many

different steps in combining these types of

knowledge into one final solution. There are various

techniques in artificial intelligence (AI) from the

standpoint of their application in software

engineering that can be deployed in solving

problems associated with software development

processes. Artificial Intelligence is concerned with

the study and creation of computer systems that

exhibit some form of intelligence and attempts to

apply such knowledge to the design of computer

based systems that can understand a natural

language or understanding of natural intelligence.

Many Software products costs can be attributed to

the ineffectiveness of current techniques for

managing this knowledge, and Artificial Intelligence

techniques can help alleviate this situation.

II. LITERATURE SURVEY: AI

TECHNQIUES
Hany M Ammar, Walid Abdelmoez and

Mohamed Salah (2012) in their paper on the Current

state and open problems in the Software Engineering

using artificial intelligence discuss about how the

artificial intelligent technique such as KBS,CBR,

Fuzzy logic and automated programming tool help

to overcome the problems associated in the

traditional software development. There are certain

open problems such as SBST requires further

research

Mark Harman (2011) discuss about the three

boards areas of AI techniques such as SBSE, Fuzzy ,

probabilistic method , classification learning and

prediction help the software engineering community

and also about the challenges ahead in AI for SE.

Farid Meziane, Sunil Vadera (2010) discuss

about the current developments and future prospects

for Artificial Intelligence in software Engineering.

Testing and the other phase of the software

development.

Farah Naaz Raza (2009) in the paper “Artificial

Intelligent technique in Software engineering

(AITSE) “ explains about by using AI based

systems with the help of automated tool or

automated programming tool we can eliminate risk

assessment phase by saving the time in software

development and also AITSE reduce the

development time in the software development.

Parveen Ranjan Srivastava and Tai-hoon Kim

(2009) discuss about the application of Genetic

Algorithm in Software Testing and this paper clearly

says that the GA is used for the improvement of the

software testing efficiently.

Mark Harman and Bryan F. Jones (2001)

presented paper on the Search-based software

engineering and in this paper explains about the

search-based techniques could be useful for the

development of software measures.

RESEARCH ARTICLE OPEN ACCESS

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 2|P a g e

Prince Jain (2011) discusses about the

interaction between Software Engineering and

Artificial Intelligence and in this paper he explains

about the reasons for which AI techniques are

needed for the software engineering process.

Jonathan Onowakpo Goddey Ebbah (2002)

presented paper on Deploying Artificial Intelligence

Techniques in Software Engineering in this paper

intends to review the techniques developed in

artificial intelligence (AI) from the standpoint of

their application in software engineering. In

particular, it focuses on techniques developed (or

that are being developed) in artificial intelligence

that can be deployed in solving problems associated

with software engineering processes.

Jyoti tewari,Swati arya, Prem narayan singh

(2013) presented paper on Approach of Intelligent

Software Agents in Future Development discuss

about the intelligent behavior of the intelligent agent

predicting the future development in a software.

Dr. Nachamai.M, Senthil Vadivu and Tapaskar

(2011) in the paper enacted software development

process based on agent methodologies discuss about

the how agent based software development have

weight factors more than traditional software

models.

Seth Hock, (1989) in the paper Computers And

Computing explains artificial intelligence on the

other hand is a domain of computer science that

attempts to make machines perform tasks that

hitherto done by human beings .

SURVEY ON AI TECHNIQUES IN

SOFTWARE CODING AND TESTING
Techniques learned from AI research make

advanced programming much simpler, especially

with regard to information flow and control as a

result of advances in knowledge representation. In

the following we focus on the AI techniques used in

supporting the tasks of coding and testing.

a) Coding:
Software engineers can apply AI techniques to help

automate or assist the programming process.

Use of AI to help automate the programming

process:
The idea here is to have a completely automated

program synthesis. This is done by having human

specialists write a complete and concise

specification of the desired software; so that, a

system can generate "functions, data structures, or

entire programs" directly from the specifications.

There are many possible AI technologies that could

be applied. Booch (1986) explains the NL

description to data types while describing the

Object-Oriented analysis and design method.

Analogical reasoning in software reuse can be used.

The idea is to find a system with similar

requirements and modify it. Although this process

looks feasible, it has not been demonstrated in

software engineering to any great extent.

Closely related to analogical reasoning techniques is

Case-based reasoning (CBR). CBR is based upon the

premise that similar problems are best solved with

similar solutions. CBR is argued to offer a number

of advantages over many other knowledge

management techniques. For program synthesis

retrieval from component repositories and the reuse

of successful past Experience is important. As an

example, one application of CBR technology was to

support the reuse of software packages within Ada

and C program libraries.

The idea of experience reuse, the most ambitious

form of CBR-supported reuse, is closely aligned

with what is called Experience Factory. This field is

also known as Organizational Learning, researches

methods and techniques for the management,

elicitation, and adaptation of reusable artifacts from

software engineering projects. An Experience

Factory is based upon a number of premises such as

a feedback process, appropriate storage of

experience, and support of reuse and retrieval.
 Constraint programming is another AI technique

that is applied in software engineering. Constraint

programming has been, for example, used to design

the PTIDEJ system (Pattern Trace Identification,

Detection and Enhancement in Java. PTIDEJ is an

automated system designed to identify micro-

architectures looking like design patterns in object

oriented source code.

A micro-architecture defines a subset of classes in an

objected oriented program. The main interest of

PTIDEJ is that it is able to provide explanations for

its answers. This is really interesting since coding

and software engineering is often considered a form

of art and where fully automated systems are not

always appreciated by potential users (or

programmers).

Search Based Software Engineering (SBSE) is an

emerging research topic that focuses on representing

aspects of Software Engineering as problems that

may be solved using meta-heuristic search

algorithms developed in AI. SBSE is the

reformulation of software engineering tasks as

optimization problems. One of the optimization and

search techniques that can be used are genetic

algorithms. Genetic algorithms are used for

automatic code generation by optimizing a

population of trial solutions to a problem. The

individuals in the population are computer programs.

b) Testing:

Software testing remains an expensive task in

the development process and one of the main

challenges concerns its possible automation. AI

techniques can play a vital role in this regard. One of

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 3|P a g e

these techniques are constraint solving techniques.

Since the seminal work of Offut and De Millo

(1991) in the context of mutation testing ,much

attention has been devoted to the use of constraint

solving techniques in the automation of software

testing (Constraint-based testing). ATGen, for

example, is a software test data generator based on

symbolic execution and constraint logic

programming for ADA programs. There are many

other ways how AI techniques can support the

testing process. One of the earliest studies to suggest

adoption of a knowledge based system for testing

was by Bering and Crawford (1988) who describe a

Prolog based expert system that takes a Cobol

program as input, parses the input to identify

relevant conditions and then aims to generate test

data based on the conditions.

A more active area of research since the mid-1990s

has been the use of AI planning for testing. An AI

planner could generate test cases, consisting of a

sequence of commands by representing commands

as operators, providing initial states, and setting the

goal as testing for correct system behavior. AI

planning was also used for testing distributed

systems and for the generation of test cases for

graphical user interfaces.

Stuart Russell and Peter Norvig, (1994) in their

paper Artificial Intelligence: A Modern Approach

explain the Analysis is the process of breaking

something into pieces or components with a view to

understanding the individual components .

A study by Kobbacy, (2007) has shown that the use

of genetic algorithms for optimization has grown

substantially since the 1980s. This trend is also

present in their use in testing, with numerous studies

aiming to take advantage of their properties in an

attempt to generate optimal test cases. Bertolino

(2007) presents a useful

framework for summarizing the challenges that are

faced in addressing the problems of ensuring that

systems are fit for purpose, suggesting further

research on: (i) developing a universal theory of

testing, (ii) fully automatic testing, (iii) design to

facilitate testing and (iv) development

of integrated strategies that minimize the cost of

repeated testing . Wappler and Wegener (2006)

acknowledge that using a fitness function as the

primary means of avoiding illegal sequences is not

efficient. Instead they propose a novel use of

Genetic Programming (GP), which aims to learn

functions or programs by evolution. The authors in

for example, used genetic algorithms for testing

object oriented programs where the main aim was to

construct test cases consisting of a sequence of

method calls.

Nand, S., Kaur, A., Jain S. (2007).in the paper Use

Of Fuzzy Logic In Software Development. Issues in

Information Systems. Explains about the use of

fuzzy logic in software testing to manage the

uncertainty involved in this phase of software

development.

SURVEY ON AI TECHNIYQUES IN

PLANNING AND PROJECT EFFORT

ESTIMATION

Good project planning involves many aspects:

staff need to be assigned to tasks in a way that takes

account of their experience and ability, the

dependencies between tasks need to be determined,

times of tasks need to be estimated in a way that

meets the project completion date and the project

plan will inevitably need revision as it progresses.

AI has been proposed for most phases of planning

software development projects, including assessing

feasibility, estimation of cost and resource

requirements, risk assessment and scheduling. This

section provides pointers to some of the proposed

uses of knowledge based systems, genetic

algorithms, neural networks and case based

reasoning, in project planning and summarizes their

effectiveness.

Knowledge Based Systems

There have been several studies that adopt this

assumption and aim to capture this experience in a

Knowledge Based System (KBS) and attempt to

utilize it for planning future software development

projects. One of the earliest studies to suggest

adoption of a Knowledge Based System (KBS) for

testing was by Bering and Crawford (1988) who

describes a Prolog based expert system that takes a

Cobol program as input, parses the input to identify

relevant conditions and then aims to generate test

data based on the conditions. Sathi, Fox &

Greenberg (1985) argue that a well defined

representation scheme, with clear semantics for the

concepts associated with project planning, such as

activity, causation, and time, is essential if attempts

to utilize KBS for project planning are to succeed.

Hence, they develop a representation scheme and

theory based on a frame based language, known as

SRL (Wright, Fox, & Adam, 1984).Their theory

includes a language for representing project goals,

milestones, activities, states, and time, and has all

the nice properties one expects, such as

completeness, clarity and preciseness. Surprisingly,

this neat frame based language and the semantic

primitives they develop have been overlooked by

others and appear not to have been adopted since

their development. Gupta, Bastani,Khan & Yen

(2004) take advantage of the goal oriented properties

of Means-Ends planning by defining potential

system actions as operators so that generating tests

becomes equivalent to the goal of finding a plan

from the current state to specified unsafe or near

unsafe states.

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 4|P a g e

Memon, Pollack & Soffa (1999) argue that

human generation of test cases for graphical user

interfaces requires enumeration of a large number of

possible sequences of user actions, making the

process inefficient and likely to be incomplete.

Instead, as with the above studies, they propose the

use AI planning methods, since once the possible

actions are specified using operators, a planner can

generate tests since it is capable of finding a

sequence of actions to achieve a goal from an initial

state. Similarly, T. Menzies (2001) that aim to utilize

a KBS approach for project management, such as the

use of production rules and associative networks

which seemed promising at the time have not been

widely adopted. Boardman, J. T., & Marshall, G.

(1990) explains about the knowledge- based

architecture for project planning and control. When

considering whether to adopt a KBS approach, the

cost of representing the knowledge seems high and

unless this can be done at a level of abstraction that

allows reuse, one can imagine that it is unattractive

to software developers who are keen and under

pressure to commence their projects without delay.

Neural Networks

Neural networks (NNs) have been widely and

successfully used for problems that require

classification given some predictive input features.

They therefore seem ideal for situations in software

engineering where one needs to predict outcomes,

such as the risks associated with modules in software

maintenance and software risk analysis (Neumann,

2002) and for predicting faults using object oriented

metrics (Thwin & Quah, 2002). Karlsson and Ryan

(1997) , Khoshgoftaar & Lanning (1995) explains

the neural network approach. The study by Hu,

Chen, Rong, Mei & Xie (2006) is typical of this line

of research. They first identified the key features in

risk assessment based on past classifications such as

those presented by Wallace and Keil (2004) and

further interviews with project managers. They

identified a total of 39 risk factors which they

grouped into 5 risk categories: project complexity,

cooperation, team work, project management, and

software engineering. These were reduced to 19

linearly independent factors using principal

component analysis (PCA). Projects were considered

to have succeeded, partially failed, or failed. In their

experiments, they tried both the use of a back

propagation algorithm for training and use of GAs to

learn networks, using 35 examples for training and

15 examples for testing. The accuracy they obtained

using back propagation was 80% and that with a GA

trained NN was over 86%, confirming that use of

NNs for predicting risk is a worthy approach, though

larger scale studies are needed.

Genetic Algorithms

There have been numerous uses of genetic

algorithms for project scheduling in various domains

(Cheng & Gen, 1994; Hindi, Hongbo, & Fleszar,

2002; Hooshyar, Tahmani, & Shenasa, 2008; Yujia

& Chang, 2006; Zhen-Yu, Wei-Yang, & Qian-Lei,

2008, Briand, Labiche, & Shousha, 2005;). A survey

of their application in manufacturing and

operations management can be found in (Kobbacy,

Vadera, & Rasmy, 2007; Meziane, Vadera,

Kobbacy, & Proudlove, 2000). These typically

formulate project planning as a constraint

satisfaction problem with an objective that needs

optimisation and, which is then transformed into a

form suitable for optimisation with a GA.

A study by Kobbacy, Vadera and Rasmy (2007) has

shown that the use of Genetic Algorithms (GAs) for

optimization has grown substantially since the 1980s

and this growth has continued while the use of other

AI technologies has declined. This trend is also

present in their use in testing, with numerous studies

aiming to take advantage of their properties in an

attempt to generate optimal test cases (Baresel,

Binkley, Harman, & Korel, 2004; Baudry, Fleurey,

Jezequel, & Le Traon, 2002a, 2002b; Briand, Feng,

& Labiche, 2002; Briand,

Labiche, & Shousha, 2005; T.Menzies(2001)&

Emrich & Lylod (1988) Wappler & Wegener, 2006)

.In the area of software development, Shan, McKay,

Lokan & Essam (2002) utilize Genetic Programming

to evolve functions for estimating software effort.

Two target grammars were adopted for the functions

that allowed use of a range of mathematical

functions (e.g., exp, log, sqrt) as well as a

conditional expressions. The approach was tested on

data consisting of 423 software development

projects characterized by 32 attributes (e.g. such as

intended market, requirements, level of user

involvement, application type, etc) from the

International Software Benchmarking Standards

Group (www.isbsg.org.au) with roughly 50% used

for training and 50% used for testing. The results of

this study show that the approach performs better

than linear and log regression models. An interesting

finding of the study was that although the most

accurate functions discovered by GP utilized similar

parameters to the traditional estimates, a key

difference was that it adopted non-linear terms

involving team size. Creating a good assignment of

staff to tasks and producing schedules is critical to

the success of any software development project.

Yujia & Chang (2006) show how it is possible to

utilize GAs to produce optimal schedules and task

assignments. Their proposal involves a two part

chromosome representation. One part includes the

assignment of individuals to tasks and another

involves representing the topological ordering of the

tasks in a way that ensures that the offspring

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 5|P a g e

generated using the cross-over operator remain valid

schedules. The fitness function is obtained by

utilizing a systems dynamics simulation to estimate

expected task duration given a particular

chromosome. The results of their experiments

suggest that this is a promising approach, though

further work on how to utilize GAs in practice when

schedules change is still needed. An important part

of developing an optimal schedule that meets a

target completion date is the trade-offs that may

occur. For example, attempts at increasing quality

can result in increasing cost and possibly

compromising completion time but

perhaps increasing user satisfaction. Increasing

resources on tasks increases the local cost but may

result in early completion, higher quality and

reduction of overall cost. Hooshyar, Tahmani &

Shenasa (2008) propose the use of GAs to optimize

schedules to take account of such trade-offs. They

represent a schedule by a chromosome consisting of

the activity duration and which is ordered based on

their dependency. In their experiments, they utilize

the standard mutation and two-point cross-over

operators and adopt a fitness function that includes

the cost and duration. The experimentation is carried

out on projects consisting of 10, 20 and 30 activities

and concludes that although the well known

algorithm due to works well for small scale

problems, GAs may be more effective for larger

scale problems. Ryan (2000) explains about the

Automatic re-engineering of software using genetic

programming and Siemens(1971) explains the CPM

time-cost tradeoff algorithm which are very useful.

Case Based Reasoning

It can be argued that successful project planning and

management is heavily based on experience with

past cases. It is therefore surprising that there are

few studies that propose the use Case Based

Reasoning (CBR) for project planning of software

development. One of the few exceptions is the study

by Yang and Wang (2009), who explore the

combined use of CBR and data mining methods for

project planning. They use a structured -

representation for cases, called Hierarchical Criteria

Architecture (HCA), where projects are described in

terms of the customer requirements, project

resources and keywords describing the domain. The

use of HCA enables different weights to be adopted

when matching cases, allowing greater flexibility

depending on the preferences of the project manager.

Given a new project, first similar new cases are

retrieved. Then, data mining methods, such as

association rule mining, are used to provide further

guidance in the form of popular patterns that could

aid in project planning. In a trial, based on 43

projects, Yang & Wang (2009), show how the

combined use of CBR and data mining can generate

useful information, such as “the duration of project

implementation was about 26 days and 85% of

projects of projects were completed on time”, which

can be used to provide guidance when planning a

similar project.

Ian Somerville in the book Software Engineering

(2000), Roger S. Pressman, in Software

Engineering: A Beginner‟s Guide (1998) explains

about Software engineering is the act of adopting

engineering principles in software development. In

this act, the principles of analysis and synthesis are

observed

III. TECHNIQUES AND TOOLS OF

AUTOMATED PROGRAMMING
Because of the evolutionary nature of software

products, by the time coding is completed,

requirements would have changed (because of the

long processes and stages of development required

in software engineering): a situation that results in

delay between requirement specification and product

delivery. There is therefore a need for design by

experimentation, the feasibility of which lies in

automated programming. Some of the techniques

and tools that have been successfully demonstrated

in automated programming environments include:

• Language Feature: this technique adopts the

concept of late binding (i.e. making data structures

very flexible). In late binding, data structures are not

finalized into particular implementation structures.

Thus, quick prototypes are created which result in

efficient codes that can be easily changed. Another

important language feature is the packaging of data

and procedures together in an object, thus giving rise

to object-oriented programming: a notion that has

been found useful in environments where codes, data

structures and concepts are constantly changing.

Lisp provides these facilities.

• Meta Programming: this concept is developed in

natural language processing (a sub field of AI).

It uses automated parser generators and

interpreters to generate executable lisp codes. Its

use lies in the modeling of transition sequences,

user interfaces and data transformations.

• Program Browsers: these look at different portions

of a code that are still being developed or

analyzed, possibly to make changes, thus

obviating the need for an ordinary text editor.

The browser understands the structures and

declarations of the program and can focus on

the portion of the program that is of interest.

• Automated Data Structuring: this means going

from a high-level specification of data structures

to a particular implementation structure.

When systematic changes need to be made

throughout a code, it is more efficient and

controllable to do it through another program (i.e.,

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 6|P a g e

program update manager) than through a manual txt

editor. For instance, a change in program X may be

required whenever h is being updated by b-1 under

the condition that b is less than C. Assume that a

program W makes a systematic change in all such

places. If another program makes a change in W,

then any program changed by W also must be

updated. Thus, program update managers propagate

changes. Because of this ability, program update

managers are useful when prototypes need to be

developed quickly.

IV. NEED FOR ARTFICIAL

INTELLIGENCE TECHNIQUES IN

SOFTWARE ENGINEERING

Based on the above literature survey the most

common reasons for which AI methods, tools and

techniques are applicable to SE are discussed:

 Automatic Programming (AP) in AI is

synonymous with Software Engineering

and this represents a new paradigm for SE

in the future research.

 Expert systems technology is sufficiently

successful and mature enough to provide

significant solutions to certain aspects of

the SE process and problem.

 AI development and maintenance

environments are suitable for direct

application to the SE process.

 AI methodology and techniques can be

applied to the software design process.

 The AI rapid prototyping model is useful as

a SE paradigm.

 Ai techniques reduces cost.

 Errors detected in coding will be isolated in

the requirements stage.

 Changes need be made only at the

requirements stage.

V. VARIOUS ARTIFICIAL

INTELLIGENCE TECHNIQUES
The various Artificial Intelligence Technique

used in the Software Development Process are listed

below:

AI Technique

Purpose

Knowledge Based

System

Used in the design phase of the

software development process

It manages the requirement

phase , planning and project

effort estimation

Neural Network Eliminates the risk associated

with modules in software

maintenance and Used in the

software engineering

prediction outcomes.

Fuzzy logic Reasoning the uncertainty

Genetic algorithm Used in the software testing

and generating test cases

Case Based

Reasoning(CBR)

Used for finding out the

duration or time taken to

complete a project

Natural Language

Processing

It helps in the user

requirements and improves the

phase of software development

life cycle.

SBSE Reformulating the software

engineering problems as

optimization problems

Rule induction Used to defect prediction

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 7|P a g e

Table.1 Various Artificial Intelligence Techniques

and its purposes

Table.2 Artificial Intelligence Learning methods

Table.3 Approaches of Artificial Intelligence

VI. CONCLUSION AND SUGGESTIONS:
In this paper the promising research work on

applying AI techniques to solve some of the most

important problems facing the software engineers is

studied. The study suggests that there is now good

progress in the use of AI techniques in SE.

Furthermore, the development of new areas such as

intelligent agents and their use in distributed

computing, context aware and secure applications

will require closer links between SE and AI in the

future.

The important suggestions emerge from the

above survey findings are Artificial Intelligence

techniques applied to the software engineering

process can have a major impact on reducing the

time to market, cost of development and enhance the

quality of software system and used to support the

tasks of coding and testing. Artificial Intelligence

techniques are well suited to the complex software

engineering problems, because they are designed to

deal with the most demanding challenges. Artificial

Intelligence based systems with the help of

automated tool or automated programming tool time

can be saved in the software development process.

REFERENCES
[1] Jyoti tewari,Swati arya, Prem narayan singh

,”Approach of Intelligent Software Agents in

Future Development”,IJARCSSE,

ISSN:2277128X , May 2013.

[2] Hany H Ammar, Walid Abdelmoez and

Mohamed Salah Hamdi, “Software

Engineering Using Artificial Intelligence

Techniques: Current State and Open

Problems” – ICCIT 2012.

[3] Mark Harman “The Role of Artificial

Intelligence in Software Engineering” ACM

computing surveys, 2011.

[4] Prince Jain,”Interaction between Software

Engineering and Artificial Intelligence-A

Review”-International Journal on Computer

Science and Engineering (IJCSE), ISSN:

0975-3397, Vol 3 No.12 December 2011.

[5] Dr. Nachamai. M ,Senthil Vadivu and

Tapaskar , “Enacted Software Development

Process Based on Agent

Expert system It uses the knowledge to

overcome the risk management

strategies during the software

development process.

Genetic code It develop automatically

generate computer program and

save the time in the coding

phase.

Automated

Tool

Use for system redesign. I t

changes the traditional software

development to expert system

development

Automatic

programming

Generation of program by

computer usually based on

specification

Simple

decision

making

Dealing with uncertainty

Intelligent

Agent

It generate new intelligent

software system for better

communication

Simulated

annealing&

Tabu search

Used in the field of engineering

Probabilistic

reasoning

Dealing with uncertainty

S.NO AI LEARNING METHODS

1 Failure Driven Learning

2 Learning by being Told

3 Learning by Exploration

S.NO APPROACHES DESCRIPTION

1 classical approach designing the AI

2 connectionist

approach

letting AI develop

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 8|P a g e

methodologies”,IJEST ,VOL.3, NO.11,

November 2011.

[6] Farid Meziane, Sunil Vadera,” Artificial

Intelligence Applications for Improved

Software Engineering Development: New

Prospects” DOI: 10.4018/978-1-60566-758-

4.ch014. 2010

[7] Farah Naaz Raza, “Artificial Intelligence

Techniques in Software engineering-

International multiconference of Engineers

and computer scientists 2009 , ISBN 978-

988.17012-2-0 Vol 1 – IMECS 2009.

[8] Parveen Ranjan Srivastava, and Tai-hoon

Kim, Application of Genetic Algorithm in

Software Testing, International Journal of

Software Engineering and its

Applications.Vol. 3, No.4, October 2009.

[9] Yang, H.-L., & Wang, C.-S. (2009).

Recommender system for software project

planning one application of revised CBR

algorithm. ExpertSystems with Applications,

36(5), 8938–8945.

doi:doi:10.1016/j.eswa.2008.11.050.

[10] Hooshyar, B., Tahmani, A., & Shenasa, M.

(2008). A Genetic Algorithm to Time-Cost

Trade off in project scheduling. In

Proceedings of the IEEE World Congress on

Computational Intelligence (pp. 3081-3086),

Hong Kong. Washington DC: IEEE

Computer Society.

[11] Zhen-Yu, Z., Wei-Yang, Y., & Qian-Lei, L.

(2008). Applications of Fuzzy Critical Chain

Method in Project Scheduling. In roceedings

of the FourthInternational Conference on

Natural Computation (pp. 473-477), Jinan,

China. Washington DC: IEEE Computer

Society.

[12] Bertolino, A. (2007). Software Testing

Research: Achievements, Challenges,

Dreams. In Proceedings of the IEEE

International Conference on Software

Engineering (pp. 85-103), Minneapolis, MN.

Washington DC: IEEE Computer Society.

[13] Kobbacy, K. A., Vadera, S., & Rasmy, M. H.

(2007). AI and OR in management of

operations: history and trends. The Journal of

the Operational Research Society, 58, 10–28.

doi:10.1057/palgrave. jors.2602132

[14] Nand, S., Kaur, A., Jain S. (2007).Use Of

Fuzzy Logic In Software Development. Issues

in Information Systems. Volume VIII, No. 2,

pp. 238-244

[15] Hu, Y., Chen, J., Rong, Z., Mei, L., & Xie, K.

(2006). A Neural Networks Approach for

Software Risk Analysis. In Proceedings of the

Sixth IEEE International Conference on Data

Mining Workshops (pp. 722-725), Hong

Kong. Washington DC: IEEE Computer

Society.

[16] Wappler, S., & Wegener, J. (2006).

Evolutionary unit testing of object-oriented

software using strongly-typed genetic

programming. In Proceedings of the Eighth

Annual Conference on Genetic and

Evolutionary Computation (pp. 1925-1932),

Seattle, WA. New York: ACM Press

[17] Yujia, G., & Chang, C. (2006). Capability-

based Project Scheduling with Genetic

Algorithms. In Proceedings of the

International Conference on Intelligent

Agents, Web Technologies and Internet

Commerce (pp. 161-161), Sydney, Australia.

ashington DC: IEEE Computer Society.

[18] Briand, L. C., Labiche, Y., & Shousha, M.

(2005). Stress testing real-time systems with

genetic algorithms. In Proceedings of the

Conference on Genetic and Evolutionary

Computation (pp. 1021- 1028). Washington

DC. New York: ACM Press.

[19] Baresel, A., Binkley, D., Harman, M., &

Korel, B. (2004). Evolutionary testing in the

presence of loop-assigned flags: a testability

transformation approach. In Proceedings of

the ACM SIGSOFT International Symposium

on Software Testing andAnalysis (pp. 108-

118). Boston: ACM Press.

[20] Gupta, M., Bastani, F., Khan, L., & Yen, I.-L.

(2004). Automated test data generation using

MEA-graph planning. In Proceedings of the

Sixteenth IEEE Conference on Tools with

Artificial Intelligence (pp. 174-182).

Washington, DC: IEEE Computer Society.

[21] Wallace, L., & Keil, M. (2004). Software

project risks and their effect on outcomes.

Communications of the ACM, 47(4), 68–73.

doi:10.1145/975817.975819

[22] Baudry, B., Fleurey, F., Jezequel, J.-M., & Le

Traon, Y. Automatic test case optimization

using a bacteriological adaptation model:

application to. NET components. In

Proceedings of the Seventeenth IEEE

International Conference on Automated

Software Engineering (pp.253-256),

Edinburgh, UK. Washington DC: IEEE

Computer Society. (2002a).

[23] Baudry, B., Fleurey, F., Jezequel, J. M., & Le

Traon, Y. (2002b). Genes and Bacteria for

Automatic Test Cases Optimization in the.

Net Environment. In Proceedings of the

Thirteenth International Symposium on

Software Reliability Engineering (ISSRE‟02)

195- 206), Annapolis, MD. Washington DC:

IEEE Computer Society.

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 9|P a g e

[24] Briand, L. C., Feng, J., & Labiche, Y. (2002).

Using genetic algorithms and coupling

measures to devise optimal integration test

orders. In Proceedings of the Fourteenth

International Conference on Software

Engineering and knowledge Engineering (pp.

43-50), Ischia, Italy. New York: ACM Press.

[25] Hindi, K. S., Hongbo, Y., & Fleszar, K.

(2002). An evolutionary algorithm for

resource-constrained project scheduling.

IEEE Transactions on Evolutionary

Computation, 6(5), 512–518.

[26] Jonathan Onowakpo Goddey Ebbah

“Deploying Artificial Intelligence Techniques

In Software Engineering, American Journal of

Undergraduate Research, March 2002.

[27] Neumann, D. (2002). An Enhanced Neural

Network Technique for Software Risk

Analysis. IEEE Transactions on Software

Engineering, 28(9),904–912.

doi:10.1109/TSE.2002.1033229

[28] Shan, Y., McKay, R. I., Lokan, C. J., &

Essam, D.L. (2002). Software project effort

estimation using genetic programming. In

Proceedings of the IEEE International

Conference on Communications,Circuits and

Systems (pp. 1108-1112), Arizona.

Washington DC: IEEE Computer Society.

[29] Thwin, M. M. T., & Quah, T.-S. (2002).

Application of neural network for predicting

software development faults using object-

oriented design metrics. In Proceedings of the

Ninth International Conference on Neural

Information Processing (pp.2312-2316),

Singapore. Washington DC: IEEE Computer

Society.

[30] Mark Harman, Bryan F. Jones, „Search Based

Software Engineering”- Elsevier science,

2001.

[31] T. Menzies, “Practical machine learning for

software engineering and knowledge

engineering,” in Handbook of Software

Engineering and Knowledge

Engineering.World-Scientific, December

2001,

[32] Meziane, F., Vadera, S., Kobbacy, K., &

Proudlove, N. (2000). Intelligent Systems in

Manufacturing: Current Developments and

Future Prospects. The International Journal of

Manufacturing Technology Management,

11(4), 218–238.

[33] C. Ryan, Automatic re-engineering of

software using genetic programming. Kluwer

Academic Publishers, 2000.

[34] Ian Sommerville, Software Engineering (6
th

Edn.) (Addison Wesley Publishers, New

York, New York, USA) 2000.

[35] Memon, A. M., Pollack, M. E., & Soffa, M.

L. (1999). Using a Goal Driven Approach to

Generate Test Cases for GUIs. In Proceedings

of the Twenty-first International Conference

on Software Engineering (pp. 257-266).

[36] J. Karlsson and K. Ryan, “A cost-value

approach for prioritizing requirements,” IEEE

Software, vol. 14, no. 5, pp. 67–74,

September/October 1997.

[37] Khoshgoftaar, T. M., & Lanning, D. L.

(1995). A Neural Network Approach for

Early Detection ofProgram Modules Having

High Risk in the Maintenance Phase. Journal

of Systems and Software,29, 85–91.

doi:10.1016/0164-1212(94)00130-F

[38] Cheng, R., & Gen, M. (1994). Evolution

program for resource constrained project

scheduling problem. In Proceedings of the

Proceedings of the 1
st
 First IEEE Conference

on Evolutionary Computation (pp. 736-741),

Orlando, FL, USA.

[39] Stuart Russell and Peter Norvig, Artificial

Intelligence: A Modern Approach (Prentice

Hall Publishers, Upper Saddle River, New

Jersey, USA) 1994.

[40] DeMillo, R.A., Offutt, A.J. (1991).

Constraint-based automatic test data

generation. IEEE Transactions on Software

Engineering 17 (9), 900–910.

[41] Boardman, J. T., & Marshall, G. (1990). A

knowledge- based architecture for project

planning and control. In Proceedings of the

UK Conference on IT (pp. 125-132),

Southampton, UK. Washington DC: IEEE

Computer Society.

[42] Seth Hock, Computers and Computing

(Houghton Mifflin College Publishers,

Boston, Massachusetts, USA) 1989.

 [43] Bering, C. A., & Crawford, M. W. (1988).

Using an expert system to test a logistics

information system. In Proceedings of the

IEEE National Aerospace and Electronics

Conference (pp.1363-1368), Dayton, OH.

Washington DC: IEEE Computer Society.

[44] M.L. Emrich, A. Robert Sadlowe, and F.

Lloyd Arrowood (Editors), Expert Systems

And Advanced Data Processing: Proceedings

of the conference on Expert Systems

Technology the ADP Environment (Elsevier-

North Holland, New York, New York, USA)

1988.
[45] Roger S. Pressman,A Beginner‟s Guide

(McGraw Hill Higher Education Publishers,

New York, New York, USA) 1988.

[46] Booch, G. (1986). Object-Oriented

Development. IEEE Transactions on Software

Engineering, 12(2), 211–221.

K. Hema Shankari Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 12(Part 6), December 2014, pp.24-33

 www.ijera.com 10|P a g e

[47] Sathi, A., Fox, M. S., & Greenberg, M.

(1985). Representation of Activity

Knowledge for Project Management. IEEE

Transactions on Pattern Analysis and

Machine Intelligence, PAMI-7(5),531–552.

doi:10.1109/TPAMI.1985.4767701

[48] Wright, J. M., Fox, M. S., & Adam, D.

(1984).SRL/2 User Manual: Robotic Institute,

Carnegie- Mellon University, Pittsburgh, PA.

[49] Siemens, N. (1971). A Simple CPM Time-

Cost Tradeoff Algorithm. Management

Science, 17(6), 354–363.

doi:10.1287/mnsc.17.6.B354

